

ARTICLE

https://doi.org/10.1038/s42003-020-0894-4

OPEN

Check for updates

Heterogeneous nitrogen fixation rates confer energetic advantage and expanded ecological niche of unicellular diazotroph populations

Takako Masuda^{1,2,5⊠}, Keisuke Inomura³, Naoto Takahata ¹/₀⁴, Takuhei Shiozaki^{1,4}, Yuji Sano ⁴, Curtis Deutsch ³, Ondřej Prášil ² & Ken Furuya^{1,6}

Nitrogen fixing plankton provide nitrogen to fuel marine ecosystems and biogeochemical cycles but the factors that constrain their growth and habitat remain poorly understood. Here we investigate the importance of metabolic specialization in unicellular diazotroph populations, using laboratory experiments and model simulations. In clonal cultures of *Crocosphaera watsonii* and *Cyanothece* sp. spiked with ¹⁵N₂, cellular ¹⁵N enrichment developed a bimodal distribution within colonies, indicating that N₂ fixation was confined to a subpopulation. In a model of population metabolism, heterogeneous nitrogen (N₂) fixation rates substantially reduce the respiration rate required to protect nitrogenase from O₂. The energy savings from metabolic specialization is highest at slow growth rates, allowing populations to survive in deeper waters where light is low but nutrients are high. Our results suggest that heterogeneous N₂ fixation in colonies of unicellular diazotrophs confers an energetic advantage that expands the ecological niche and may have facilitated the evolution of multicellular diazotrophs.

¹ Department of Aquatic Bioscience, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan. ² Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 01 Třeboň, Czech Republic. ³ School of Oceanography, University of Washington, Seattle, WA, USA. ⁴ Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan. ⁵Present address: Global Change Research Institute, The Czech Academy of Sciences, 664 24 Drásov, Olomouc, Czech Republic. ⁶Present address: Graduate School of Science and Engineering, Soka University, Tangi, Hachioji, Tokyo 192-8577, Japan. ^{Se}mail: takako@alga.cz

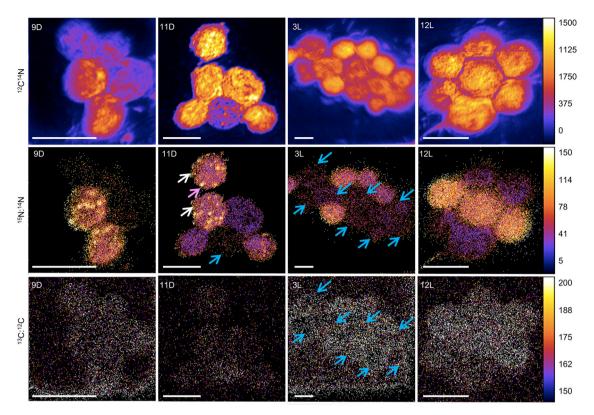
itrogen (N₂) fixing microorganisms (diazotrophs) are critical suppliers of bioavailable nitrogen (N) in the world's oceans. The N₂ fixed by these organisms supports cell growth, but also enters the food web through grazing by zooplankton and excretion of ammonium (NH⁺) or other dissolved nitrogenous compounds¹⁻⁵. All diazotrophs have a N₂ fixing enzyme complex, nitrogenase. Since most nitrogenase enzymes are irreversibly damaged by molecular oxygen^{6,7}, diazotrophs separate photosynthesis and N₂ fixation spatially or temporally^{8,9}. Diazotrophs are taxonomically diverse and occupy distinct large-scale habitats9-12, suggesting there are multiple strategies for managing the energetic demands of photosynthesis, growth, and N₂ fixation under a wide range of ocean conditions. However, the links between diverse physiological strategies and the resulting ecological niches and spatial distributions remain poorly understood^{10,13-15}.

Crocosphaera watsonii (hereafter Crocosphaera), a marine unicellular diazotroph, is abundant and widespread in tropical and subtropical oceans^{10,11,16,17}, and its areal N₂ fixation rate (µmol N m⁻² d⁻¹) can be equal to or greater than that of *Trichodesmium*, a filamentous diazotroph abundant in tropical oceans^{16,18,19}. Due to its strong diel alternation between C and N metabolisms, *Crocosphaera* is a promising model for investigating cellular C and N physiology^{17,20–23}. *Cyanothece* is another well studied unicellular diazotroph. It is closely related to the sequence-defined genus, UCYN-C^{24,25}, which has been observed to supply N to other phytoplankton and contribute to vertical POC (particulate organic carbon) transport²⁶. Intensive studies on *Cyanothece* physiology make it a model organism to study the physiology of unicellular diazotrophic cyanobacteria^{27,28}.

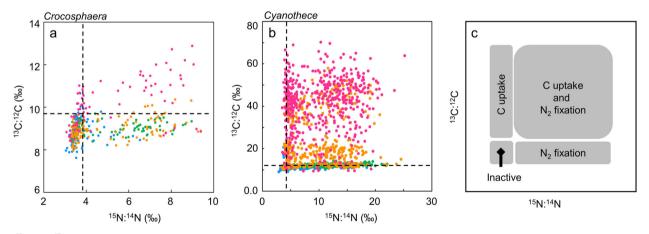
When exposed to a light:dark cycle, the peak of N_2 fixation activity of most unicellular photosynthetic diazotrophs is restricted to the dark period. A similar diel cycle is observed in *Crocosphaera*^{20–22,29} and *Cyanothece*²⁷, however, both taxa can be forced to fix N_2 , if maintained under constant illumination for an extended period^{23,30,31}. This observation led to speculation that its metabolism is heterogeneously distributed among cells in a population¹⁴ as observed in *Trichodesmium*⁸.

Recent technological advances in the visualization of enriched stable isotopes in individual cells using NanoSIMS enable cell level analyses of N₂ fixation activity^{32–38}. With this technology, high variations in C and N₂ fixation activity from in situ "*Crocosphaera*-like" cell colonies were shown, suggesting heterogeneity of metabolisms¹⁷. During the same period of time, similar physiological heterogeneity was observed among the clonal population of *Crocosphaera* (WH8501)²³. These observations lead us to question how widely this heterogeneity applies and how it impacts the cellular energetics and resulting ecological niches.

Here, we investigated physiological heterogeneity among clonal populations of multiple genera of cyanobacteria, Crocosphaera (PS0609A) and Cyanothece (ATCC51142), by quantifying the pattern in N₂ fixation and C uptake at the sub-cellular level. Using clonal populations prevents interference from other N fixing organisms, a potential problem noted in the in situ study¹⁷ and using different genera and strains of cyanobacteria allows us to evaluate the generality of the pattern. We have also applied multiple statistical methods to quantify the heterogeneity in C and N₂ fixation. To analyze the energetics and C consumption of the observed cell-level heterogeneity, we present a model of diazotroph population to simulate the advantage of maintaining both nitrogen fixing and non-N2 fixing cells. We used oceanographic data to predict the implications of metabolically differentiated populations for the ecological niche of unicellular diazotrophs through the photic zone.


Results

Heterogeneity in N enrichment among cells. ¹⁵N enrichment was variable within a single strain of continuous culture grown Crocosphaera cells (Figs. 1 and 2) and batch culture grown Cyanothece (Fig. 2). Initially, ratios of ${}^{13}C:{}^{12}C$ (= ${}^{13}C/{}^{12}C$) and ^{15}N :¹⁴N (= $^{15}N/^{14}N$) were 8.8 ± 0.5‰ and 3.5 ± 0.1‰, respectively in Crocosphaera harvested at steady state under continuous culture and were $11.0 \pm 0.4\%$ and $3.6 \pm 0.2\%$, respectively in Cyanothece harvested at exponential phase under batch culture (Fig. 3 and Supplementary Table 1). After 11 h in the dark, two cells (Fig. 1; white arrows in panel 11D ¹⁵N:¹⁴N) were more strongly enriched in ¹⁵N compared to the other four cells, of which one cell showed the least enrichment (Fig. 1: blue arrow). However, the least ¹⁵N enriched cells were actively ¹³C enriched in the light period (e.g., cells with blue arrow in panel $3L^{13}C^{12}C$) showing that these cells were alive and metabolically active. The variable ¹⁵N enrichment was observed not only under continuous culture but also under exponentially growing batch culture and suggests that heterogeneous ¹⁵N₂ fixation happens with or without nutrient stress.


The ¹⁵N₂ fixation in the dark was observed based on the temporal changes in cellular ¹⁵N:¹⁴N ratios in both Crocosphaera and Cyanothece (Fig. 3a, d and Supplementary Table 1). Calculated per-cell ¹⁵N enrichment rates, ρ , followed similar trends as the ¹⁵N:¹⁴N ratio, and increased significantly (p = 0.014 by one-way ANOVA³⁹) in Crocosphaera from 0 fmol N cell⁻¹ h⁻¹ at the start of the dark period to a mean of 17.3 fmol N cell⁻¹ h⁻¹ at 7D, but with a range of 0 fmol N cell⁻¹ h⁻¹ to 37.7 fmol N cell⁻¹ h⁻¹ (Supplementary Table 1b). These values are comparable to those reported in earlier studies (Supplementary Table 2). Cyanothece also showed a similar trend within population heterogeneity; p varied from 0 fmol N cell⁻¹ h⁻¹ to 12.7 fmol N cell⁻¹ h⁻¹ across 84 cells at the time of highest mean ¹⁵N enrichment (5.54 fmol N cell⁻¹ h⁻¹ at 6D) (Supplementary Table 1b). The ¹⁵N:¹⁴N ratios measured by NanoSIMS were in good agreement with the ratios measured by mass spectrometer (Supplementary Fig. 1).

The proportion of Crocosphaera cells that incorporated detectable ¹⁵N (i.e., cells with ¹⁵N:¹⁴N exceeding 2 SD above the mean at time 0: 3.8‰ for Crocosphaera, 4.0‰ for Cyanothece) increased from 40 to 75% in the dark, suggesting that at least ~25% of cells did not detectably fix N_2 (Fig. 3b, e). Higher variability of ¹⁵N enriched cells in Crocosphaera compared to Cyanothece may be the result of low number of observed cells (between 7 to 33 cells at each time point) (Fig. 3b, d). Hotspots of ¹⁵N:¹⁴N were observed in the dark period. The ¹⁵N hotspots started to appear after 5D, and continued to form until the beginning of the light period (2 L), with the peak of 62% at 10D (Fig. 1 and 3c) in Crocosphaera. Similar temporal changes were observed for the proportion of cells with ¹⁵N hotspot among total cells in Cyanothece, from 2D to 6L with a peak at 6D. Therefore, the lack of ¹⁵N hotspot in at least ~40% of cells again shows that a large fraction of cells did not detectably fix N₂. N₂ fixation earlier in the diel cycle in Cyanothece compared to Crocosphaera (Fig. 3) supports previous reports of a peak around 4D in Cyanothece and 9D in Crocosphaera under 12 L:12D cycle^{21,40}

To quantify the differentiation of rates within each population, we examined the statistical distribution of C and N isotope enrichments among all cells. Intercellular metabolic heterogeneity was defined as the coefficient of variation (CV; ref. ⁴¹) in each isotope ratio. The variations in ¹⁵N enrichment are observable in cell level ¹⁵N:¹⁴N ratios, which varied from 3.2‰ to 6.2‰ (4.4 ± 1.0‰, CV = 23.6%) at 6D in *Crocosphaera*, 3.5‰ to 18.9‰ (8.3‰ ± 4.4‰, CV = 53.8%) at 6D in *Cyanothece* (Figs. 2 and 3 and Supplementary Table 1). In contrast, ¹³C uptake (¹³C:¹²C)

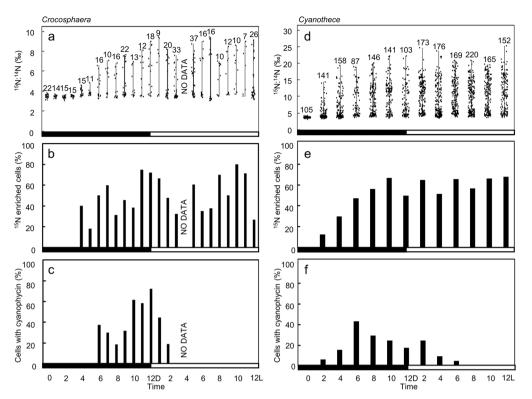


Fig. 1 NanoSIMS images showing temporal changes in isotopic enrichment in *Crocosphaera* **under a dark:light cycle of 12:12 h.** Numerals and alphabets in each photo denote time in a photoperiod: 9D and 3L indicate 9 h in the dark and 3 h in the light, respectively. The colored bars for ${}^{12}C{}^{14}N$ indicate the number of ions collected per pixel, the other colored bars indicate the ratio of ${}^{15}N{}^{:14}N$ and ${}^{13}C{}^{:12}C$ with the scale factor of ×10,000. White arrows in ${}^{15}N{}^{:14}N$ at 11D show the cells with intensive ${}^{15}N$ enrichment, blue arrow shows the cells with less ${}^{15}N$ enrichment, pink arrows show ${}^{15}N$ hotspots. Scale bars, 5 µm. ${}^{12}C{}^{14}N$ shows the baseline, from which labeling departs in lower panels; ${}^{15}N{}^{:14}N$ shows the fate of newly fixed ${}^{15}N{}_2$, ${}^{13}C{}^{:12}C$ shows newly fixed ${}^{13}C$ uptake.

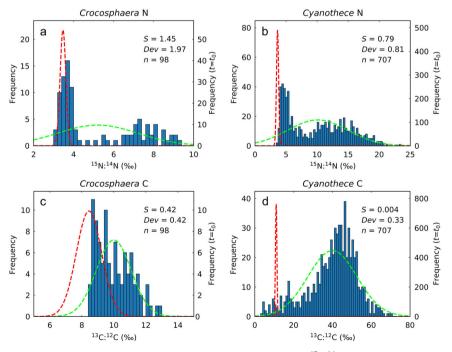


Fig. 2 ¹³**C** and ¹⁵**N** uptake by two different unicellular diazotrophs. Nitrogen and carbon incorporation by a *Crocosphaera* and b *Cyanothece* shown by scatter plot of ¹⁵N:¹⁴N and ¹³C:¹²C in individual cells. Black dot-lines show threshold of ¹⁵N and ¹³C enrichment. **c** Schematic view of scatter plot. Blue, data obtained during 0D6D; Green, data obtained during 7D-12D; Orange; data obtained 1L-6L; Pink, data obtained 7L-12L. Higher ¹³C uptake in *Crocosphaera* and 1.7 atm% for *Cyanothece* (see Methods).

ratio) was generally similar across cells, in both ¹⁵N-enriched cells and non-enriched cells (Figs. 1 and 2 and Supplementary Table 1). For example, in the ¹³C:¹²C ratio of 3 L in Fig. 1, all 14 cells are enriched similarly, with ¹³C:¹²C ratios between 7.9‰ and 9.4‰ (8.7‰ \pm 0.5‰, CV = 6.2%) in *Crocosphaera* (Fig. 2). The CV for ¹⁵N:¹⁴N (23.6 to 31.4% during 6D to 12D, 25.4 to 48.0% during 6 L to 12 L) were greater than those estimated for $^{13}\mathrm{C}:^{12}\mathrm{C}$ during 6 L to 12 L (4.8 to 10.6%), suggesting higher heterogeneity in $^{15}\mathrm{N}_2$ fixation compared to $^{13}\mathrm{C}$ fixation. The same trend was observed in *Cyanothece* (46.4 to 56.2% during 6D to 12D, 45.5 to 48.9% during 6 L to 12 L in $^{15}\mathrm{N}:^{14}\mathrm{N}$, 24.0 to 40.1% in $^{13}\mathrm{C}:^{12}\mathrm{C}$ during 6 L to 12 L) (Supplementary Table 1a).

Fig. 3 Observed heterogeneity in ¹⁵N uptake by two different unicellular diazotrophs. **a**, **d** Diel change in N₂ fixation (¹⁵N:¹⁴N), **b**, **e** diel change in percentage of ¹⁵N-enriched cells, **c**, **f** diel change in percentage of cells with ¹⁵N hotspot in **a** to **c** *Crocosphaera* and **d** to **f** *Cyanothece*. Black and white bars at the bottom of each graph indicate dark and light period, respectively. NO DATA at 4 L in *Crocosphaera* shows no data was collected.

Fig. 4 Statistical analysis of heterogeneous uptake of N and C. Frequency distribution of **a**, **b** 15 N:¹⁴N for *Crocosphaera* and *Cyanothece* (6 L to 12 L) and **c**, **d** 13 C.¹²C for *Crocosphaera* and *Cyanothece* (6 L to 12 L), respectively. Red dashed curve is the normal distribution for the initial condition ($t = t_0$) with the special *y*-axis on the right (that on the left is for other plotted values). Green dashed curve is the normal distribution based on the mean value and standard deviation of the probability density. *S*, bimodal separation; *Dev*, deviation from the normal distribution; *n*, number of samples. Both for *Crocosphaera* and *Cyanothece*, *S* and *Dev* are larger for 15 N:¹⁴N, suggesting stronger heterogeneity for N uptake.

The distribution of isotope ratios among cells reveals qualitatively different enrichment trends for C compared to N, for both Crocosphaera and Cyanothece (Fig. 4). The distribution of ¹⁵N:¹⁴N reveals two distinct peaks after 12 h, one that remains near the initial ratio and a second that develops at enriched levels of ¹⁵N, for both Crocosphaera and Cyanothece (Fig. 4a, b). In contrast, few cells remain at the initial ratio ¹³C:¹²C (Fig. 4c, d), and only a single broad peak is evident. To evaluate this bimodality, we calculated the "bimodal separation" (S; ref. 42), a distance between the means of two Gaussian distributions fit to the data (see Methods). The separations of peaks in ¹⁵N:¹⁴N was consistently larger than for ${}^{13}C:{}^{12}C$, both for Crocosphaera (S = 1.45 for N, vs. S = 0.42 for C) and for Cyanothece (S = 0.79 for N, vs. S = 0.004 for C). We have also applied the bimodal curve fitted with ¹⁵N:¹⁴N to ¹³C:¹²C with the curve shape maintained (relative relation between two normal distributions and S are maintained); even after the curve is fitted to ¹³C:¹²C, the difference between the data and the curve is statistically significant for both diazotrophs (p < 0.001), indicating a significant difference between ¹⁵N:¹⁴N and ¹³C:¹²C.

To confirm that the distribution of N isotopes develops a bimodal structure indicative of distinct rates among subpopulations, we compared the observed frequency distributions to a single Gaussian distribution with the same mean value and standard deviation (Fig. 4). For ¹⁵N:¹⁴N, the peak of the normal distribution appears near the local minima between the two peaks of the data (Fig. 4a, b), again indicating strong bimodal separation. In contrast, the normal distribution largely overlaps with the data for ¹³C:¹²C (Fig. 4c, d). We computed the deviation (Dev) from the normal distribution by adapting a commonly used form of Chi square (χ^2) normalized by the sample number (n)(see Methods). The deviations from a single Gaussian distribution are stronger for ¹⁵N:¹⁴N than for ¹³C:¹²C for both diazotrophs (Dev = 1.97 vs. 0.42 for Crocosphaera and 0.81 vs. 0.33 forCyanothece). These results qualitatively and quantitatively support stronger heterogeneity in N uptake than for C uptake, indicating a clear separation between N2 fixing cells and non-N2 fixing cells, without a comparable separation of C fixation.

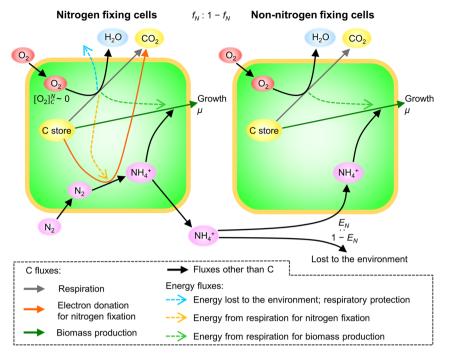
Although *Crocosphaera* and *Cyanothece* are generally referred to as free-living unicellular cyanobacteria, they have been reported in colonies of more than two cells^{17,23} (Fig. 1). In the *Crocosphaera* culture, 55% of total cells were observed as colonies of 3 to 5 cells in this measurement (Supplementary Fig. 2). Colonial *Crocosphaera* cells were shown in earlier culture studies²³, and an in situ study found that 45 to 85% of *Crocosphaera*-like cells were observed as colonies of 3 to 242 cells¹⁷. Colonial formation of cells might increase the efficiency of excreted NH⁴₄ transfer among cells.

Simulating population heterogeneity of N_2 fixation. The strong concentration of newly fixed N in a sub-population of colonial unicellular diazotrophs suggests that localizing the costly process of N_2 fixation may confer an advantage to the population as a whole. A large part of the energetic cost of N_2 fixation is incurred in the protection of nitrogenase from O_2 , which is achieved through excess respiration of C (refs. ^{43,44}). We therefore hypothesize that having only a limited proportion of cells to pay the oxygen management cost could reduce community C requirements, potentially leading to overall higher growth.

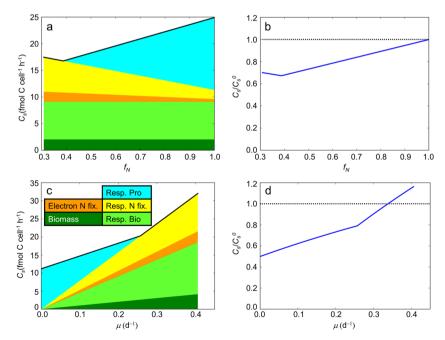
To evaluate the potential benefits of confining N_2 fixation to a sub-population, we used a Cell Flux Model of a N_2 fixer⁴⁴. The model uses a coarse-grained metabolic flux network including core metabolisms of respiration, biosynthesis and N_2 fixation, which are constrained by mass, electron and energy balance (Fig. 5) (see Methods for details). We simulate a steady state

environment where cells grow at a rate of μ (d⁻¹). To maintain the prescribed rate of growth, energy must be provided by respiration, with distinct rates allocated to N₂ fixation and biomass production^{44,45}. In turn, the total respiration rate predicts the intracellular O₂ concentrations, for a given diffusivity of O₂ across the cell membrane. Additional respiration is added as needed to maintain anoxia inside the cell, thus protecting the nitrogenase enzyme and enabling N₂ fixation⁴⁴. The total carbon consumption rate per cell is computed to satisfy the sum of all 3 demands: biomass growth, N₂ fixation, and respiratory protection against O₂.

Here we adapted this cellular model⁴⁴ to represent a heterogeneous colony of cells (the model version named CFM-Colony, with a fraction f_N that fix N₂, and a remaining fraction $1 - f_N$, that do not. The two sub-populations share a common medium, allowing N₂-fixing cells to transfer fixed nitrogen (NH₄⁺) to non- N₂-fixing cells. The transfer of newly fixed N is prescribed by an efficiency parameter, E_N , with the remaining fraction $(1 - E_N)$ of excreted NH₄⁺ being lost from the entire colony.


To quantify the impact of heterogeneous rates of N₂ fixation, we compare its population-scale rate of C consumption (denoted C_S), to the rate that would apply to a homogeneous population of the same size (denoted C_S^0). When $C_S/C_S^0 < 1$, the colony has lower C consumption with heterogeneous N₂ fixation than homogeneous N₂ fixation. The rate of N₂ fixation by a heterogeneous community, N₅, relative to a population with uniform rates, N_S^0 (when $f_N = 1$) can be expressed as follows:

$$N_{S}/N_{S}^{0} = f_{N} \left(1 + \frac{1 - f_{N}}{f_{N}E_{N}} \right)$$
(1)


The ratio of C consumption associated with N_2 fixation and respiratory protection follows the ratio of N fixation rates by heterogeneous versus homogeneous populations (Eq. 1).

Modeled colonies with N2 fixation confined to a subpopulation benefit from a substantial drop in overall C consumption, due to lower community level requirements for respiratory protection of nitrogenase (Fig. 6). For typical Crocosphaera growth rates ($\mu = 0.2$) and a low efficiency of NH₄⁺ transfer ($E_N = 0.2$) C savings amount to ~8 fmol C cell⁻¹ h⁻¹, which is >30% of the C budget of a population with homogeneous rates (Fig. 6a, b). Total C consumption reaches a minimum value at an intermediate value of f_N , due to two opposing factors; as f_N initially decreases below 1, respiratory protection is reduced. However, as f_N decreases, a larger portion of cells must also rely on transferred NH_4^+ , which allows more NH_4^+ to be dissipated into the environment, requiring higher C consumption to replace it. This effect is represented by (Eq. 1) where increasing f_N leads to increasing N_S . At an intermediate value of f_N , these two factors minimize Cs, and respiratory protection is covered by energetically balanced productive flows of respiration.

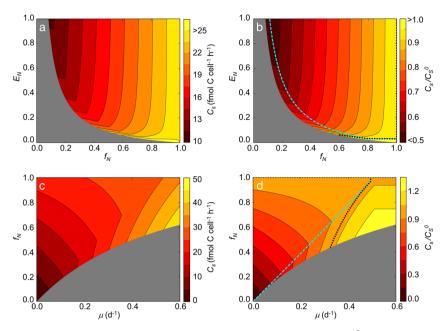
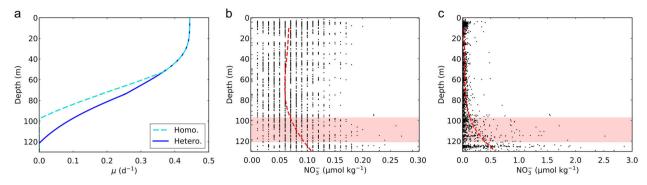

The value of f_N that maximizes C savings tends to increase with decreasing E_N due to increased costs for N₂ fixation [Eq. 1] (Fig. 7b). When $E_N = 0.1$, C_S (thus C_S/C_S^0) reaches a minimum at $f_N \sim 0.56$ (Supplementary Fig. 3), a level of heterogeneity similar to that seen in the culture experiments, in which about a half of cells fix N₂. This optimum f_N also increases with the growth rate μ due to increased energy costs for biomass production and N₂ fixation (Fig. 7d). The 2D plot of C_S and C_S/C_S^0 for various f_N and E_N shows that up to 55% of C can be saved at high E_N and low f_N (Fig. 7a, b). On the other hand, even at $E_N < 0.1$, heterogeneity can still save carbon (Fig. 7b), due to the small cost of N₂ fixation relative to respiratory protection⁴⁴. Considering the fact that C is one of the limiting factors for the growth for diazotrophs^{28,46,47},

Fig. 5 Schematic of cell flux model simulating heterogeneity of *Crocosphaera* **during the dark period.** Green space, cytoplasmic space; peach frames, cell membrane layers; circular blobs, chemical compounds; solid arrows, material fluxes; dashed arrows, energy fluxes. C store represents C storage accumulated during the preceding light period, which is used for multiple purposes. The use of C store is represented by solid arrows of different colors by C fluxes and the different energy fluxes from respiration are colored differently; see the list at the bottom. f_N represents the fraction of N₂ fixing cells; thus that of non-nitrogen-fixing cells becomes $1 - f_N$. The O₂ concentration of N₂ fixing cells. Excreted fixed N(NH⁴₄) is transferred to non-N₂-fixing cells with efficiency of E_{Ni} , $1 - E_N$ is the fraction of excreted NH₄⁺ lost to the environment. Cells grow at the rate of μ (d⁻¹).

Fig. 6 Carbon use of heterogeneous population, C_s and C_s relative to non-heterogeneous population C_s^0 . a C_s for various f_N . b C_s/C_s^0 for various f_N . c C_s for various μ . For a and c the legend in c shows the colors used for each fluxes; Dark green, biosynthesis; Bright green, respiratory energy production for biosynthesis; Orange, electron donation for N₂ fixation; Yellow, respiratory energy production for N₂ fixation; Cyan, respiratory protection. See Fig. 5 for more detail where similar colors are used for each C flux. Black solid lines at the top of **a** and **c** represent the total C fluxes. Black dotted lines in **b** and **d** are for $C_s/C_s^0 = 1$. $f_N = 0.5$, $E_N = 0.2$, and $\mu = 0.2$ (d⁻¹) unless they are variable on the x-axes. Temperature T = 26 °C and O₂ concentration in the environment $[O_2] = 208 \,\mu$ M, representing saturated concentration at this temperature and salinity of 35ppt⁸¹.

Fig. 7 Carbon use of heterogeneous population, C_s and C_s relative to non-heterogeneous population C_s^0 plotted for multiple parameters. a C_s for various f_N and E_N . b C_s/C_s^0 for various f_N and E_N . c C_s for various μ and f_N . d C_s/C_s^0 for various μ and f_N . In b and d, dashed lines in cyan indicates optimum f_N , which gives lowest C_s/C_s^0 for E_N and μ , respectively. Dotted lines indicate where $C_s/C_s^0 = 1$ (note that C_s/C_s^0 is always 1 at $f_N = 1$). Gray zones indicates where N₂ fixing capacity cannot sustain the population. $f_N = 0.5$, $E_N = 0.2$, and $\mu = 0.2$ (d⁻¹) unless they are variable on the axes. Temperature T = 26 °C and O₂ concentration in the environment [O₂] = 208 μ M, representing saturated concentration at this temperature and salinity of 35 ppt (ref. ⁸¹).

heterogeneity of N_2 fixation might be an important strategy to increase their growth rates.


Because unicellular diazotrophs can use NH₄⁺, growth efficiency should be maximized when cells can meet their N demand from NH₄⁺ in the environment, thus saving the considerable cost of N₂ fixation (Fig. 6a, c). If cells rely solely on the N₂ fixation for their N source, higher growth rate would render respiratory protection negligible, yielding higher growth efficiency. For example, the cell flux model (Fig. 6) predicts that as growth rate increases beyond ~0.28 (d⁻¹), respiratory protection is no longer needed and the growth efficiency reaches its highest level. This occurs at a specific f_N where respiratory protection is minimized with minimum loss of N to the environment (C_S and C_S/C_S^0 at $f_N \sim 0.38$ in Fig. 6a, b respectively and cyan dashed curve in Fig. 7b).

The amount of C saved by heterogeneous N₂ fixation depends only slightly on the poorly known value of E_N . This insensitivity is based on the relatively small cost for N₂ fixation⁴⁴. While N₂ fixation requires 16 ATP per N₂, when $E_N = 1$, the cost is predicted to be low relative to the whole cell energy requirement for biosynthesis since N₂ fixation is just one reaction and there are many other pathways where ATP is consumed in the process of biosynthesis. In addition, cost for O₂ management is overwhelming. As E_N decreases, the cost for N₂ fixation increases inversely proportional to E_N , but due to the relatively low costs of N₂ fixation, the whole cell C costs (thus C_S and C_S/C_S^0) are relatively insensitive to E_N .

The energetic advantage of heterogeneous N₂ fixation rates increases as growth rates decline (Figs. 6c, d and 7c, d). Slower growth rates reduce the costs of biomass synthesis and N₂ fixation, thus making respiratory protection a dominant energetic and C cost (Fig. 6c). Since heterogeneous populations can lower this cost by focusing N₂ fixation in a fraction of cells, more C can be saved at lower μ . Over 90% of C can be saved at low μ and low f_N (Fig. 7d). On the other hand, when $\mu > 0.35$ (d⁻¹), C_S/C_S^0 can go above 1 (Figs. 6d and 7d) due to high costs for growth and N₂ fixation, and N loss to the environment. The growth rates of *Crocosphaera* compiled from laboratory studies have a mean value of $\mu < 0.3 \text{ (d}^{-1})$ (ref. ⁴⁸). In the ocean, nutrients such as iron and phosphorus are generally more limited compared to culture conditions leading to even lower μ . Thus, with a typical growth rate in the ocean, it is likely that population heterogeneity in N₂ fixation can save a considerable fraction of population C costs.

Implications for vertical habitat range. Fixed C is required for N_2 fixation, respiration and cellular growth, providing energy, electrons and reduced C. In the open subtropical ocean, chlorophyll concentrations typically reach a maximum at the bottom of the photic zone, and the top of the nutricline, ~100 m depth, where both light and nutrients are adequate for growth, albeit at low rates. Below these depths, available light becomes so low that it prevents cells from fixing enough C to be viable (here we define maximum viable depth, MVD). Since heterogeneous N_2 fixation reduces the overall C requirement of such populations, it could act to extend their MVD deeper into the nutricline.

We simulated the depth variation of the growth rate for Crocosphaera populations with homogeneous versus heterogeneous N₂ fixation rates (see Methods). The model result shows that MVD of the heterogeneous population is ~ 25 m deeper than that of the homogeneous population (Fig. 8a). This expanded MVD may be important because the available nutrient typically increase with depth and expanding MVD allows Crocosphaera to utilize the higher concentration of the growth-essential nutrient. For example, at the Hawaii Ocean Time-series (HOT) site at 22° 45'N, 158° 00'W (ref. 49), the concentration of phosphate (PO₄³⁻: one of the potentially limiting nutrients) increases below ~80 m depth and heterogeneous populations would be able to utilize ~40% higher concentration than homogeneous populations (Fig. 8b). A similar depth profile of PO_4^{3-} is observed in the South Pacific Gyre at 25°S, 170°W, where the highest nifH gene concentration of Crocosphaera have also been observed⁵⁰. Under those conditions, the model predicts heterogeneous population

Fig. 8 Viability range of *Crocosphaera* **in the water column expanded in depth by heterogeneous** N_2 **fixation. a** Light dependent growth rate (μ) of populations of homogeneous (cyan dashed curve: Homo.) and heterogeneous N₂ fixation (blue solid curve: Hetero.). **b**, **c** observed PO₄³⁻ and NO₃⁻ concentrations, respectively, from the Hawaii Ocean Time-series (HOT); 22° 45'N, 158° 00'W (ref. ⁴⁹). Data are based on 25 years of observations (from 1988 to 2012); red dashed curves represent the averaged values. The red shading represents the difference of the depth where μ becomes zero between the two different populations in **a**; heterogeneous N₂ fixation allows *Crocosphaera* to utilize higher concentration of PO₄³⁻.

would utilize up to ~90% higher concentration of PO_4^{3-} (Supplementary Fig. 4a).

In these observations, NO₃⁻ concentrations also increase with depth, which may lead to a partial suppression of N₂ fixation (Fig. 8c and Supplementary Fig. 4b). However, the NO₃⁻ concentrations in the expanded vertical niche remain well below what would cause full suppression^{51–53}. For example, the concentration of NO₃⁻ at MVD is below 2 μ M whereas even 5 μ M does not fully suppress N₂ fixation of *Crocosphaera*^{51–53}. Since respiratory protection is required regardless of the level of N₂ fixation (thus required even when N₂ fixation is partially suppressed)⁵⁴, heterogeneous population would still save C even at depths near the MVD.

Discussion

The results of our laboratory observations demonstrate that unicellular diazotrophic cyanobacteria form colonies in which the key metabolic function of N_2 fixation is confined to a distinct subpopulation. Guided by these observations, metabolic modeling shows that this functional specialization may provide an energetic advantage, especially in oligotrophic regions where nutrient availability increases as light diminishes. These findings have important implications for role of metabolic specialization in the evolution of multi-cellularity, and the biogeography of unicellular diazotrophs and their role in biogeochemical cycles. Evaluating these broader implications will require a more complete understanding of the mechanisms and economics of material transfers within colonies, and the environmental factors that influence and sustain them.

Our results suggest that the exchange of newly fixed N within colonies is key to reducing population carbon costs, potentially explaining why the cells are often observed in aggregations (Fig. 1). However, the mechanisms of NH_4^+ transfer between cells and its overall efficiency (E_N) within each colony remain poorly constrained. It is likely that the surface:volume ratio of the cell and the size of aggregated colonies can both influence E_N . The diffusivity between the cellular spaces, might be affected by the production of extracellular polymeric substances. Also, the uptake properties of the cells (i.e. the maximum uptake rate and the half saturation constants of NH_4^+) influence how effectively they obtain NH₄⁺. For example, if the N is transported with intercellular transporters, E_N would decrease considerably. To understand what regulates population heterogeneity of N2 fixation, it may be useful to examine the heterogeneity of N₂ fixation under varying growth conditions, including different ambient NH_4^+ and O_2 concentrations. Also, it is possible that N_2 fixation is tied to specific phase of the cell cycle, which requires further experiments.

Recent ocean ecological and biogeochemical models simulate various functional groups of diazotrophs including unicellular types^{55,56}, but diazotrophs within the same functional groups are generally represented as a uniform metabolic population. Given the observed bimodality of N2 fixation and its impact on C cost, our study suggests that resolving such heterogeneity and its underlying causes may be essential to simulating the ocean ecosystems and predicting the niche of unicellular diazotrophs. In particular, the dependence of C savings on cellular growth rate would help to test the model predictions for expanded vertical habitat. On the other hand, our model shows that population C savings are relatively insensitive to uncertainties in E_{N} , especially at low growth rate, where the rate of N assimilation becomes small and costs of respiratory protection dominate (Fig. 7c and Supplementary Fig. 5). Thus, while the expansion of vertical niche depends on the growth rate dependence of C savings, it appears robust to uncertainty in N transfer efficiency, E_N .

Given the ubiquity of phenotypic heterogeneity⁵⁷ and intercellular cooperation⁵⁸, metabolic heterogeneity may be a general strategy for maximizing fitness among diazotrophic cyanobacteria. It remains an open question whether filamentous diazotroph Trichodesmium separates N2 fixing cells (diazocytes) and cells responsible for photosynthesis^{8,59-61} or not^{35,62}. If Trichodesmium separates N2 fixation and photosynthesis on cellular level, the observation of heterogeneity of N2 fixation in both Crocosphaera and Cyanothece together with the heterogeneity in N₂ fixation in Trichodesmium³⁵ suggest an evolutionary relationship between unicellular and filamentous diazotrophs. However, it remains an open question whether there is connection between heterogeneity in N2 fixation in unicellular diazotrophs and multicellular diazotrophs, as well as whether unicellular or multicellular diazotrophs evolved first in the cyanobacterial lineage⁶³⁻⁶⁵. The finding that heterogeneity in N₂ fixation occurs in both unicellular and multicellular diazotrophs may support the hypothesis that the division of labor is a key factor driving multi cellular cooperation in evolutionary transitions^{66,67}.

Methods

Phytoplankton cultures. A *Crocosphaera* strain isolated from the surface of the western subtropical Pacific⁶⁸ was grown in a continuous 1.2 L culture in N-free medium. To closely represent their habitat (the euphotic zones of subtropical gyres), the culture was maintained in a chemostat with a dilution rate 0.20 d⁻¹ (40% of the maximum growth rate), at a temperature of 26°C, an irradiance of 200 µmol photons m⁻² s⁻¹, and a dark:light cycle of 12:12 h (1D to 12D, 1 L to 12 L). The beginning of the dark period was considered time 0 (0D). The N-free medium was prepared from seawater collected from the surface of the western North Pacific

Ocean (34°20'N, 138°40'E), enriched with 20 μ M of NaH₂PO₄, f/2 vitamins, and f/2 trace metals^{69,70}. *Cyanothece* sp. ATCC51142 was grown in a 1.0 L culture in N-free ASP2 medium⁷¹ which contains 28.7 μ M of K₂HPO₄, a temperature 26 °C, an irradiance of 400 μ mol photons m⁻² s⁻¹, and a dark:light cycle of 12:12 h (1D to 12D, 1 L to 12 L) at growth rate (μ) of 0.30 d⁻¹.

¹⁵N and ¹³C uptake. N₂ fixation was measured following the method described by Mohr et al.²³. Briefly, N-free medium was degassed and rapidly transferred to 125 mL glass bottles with minimal agitation until the maximum volume of the bottles was reached. These were septum-capped and enriched by injecting 1 mL of ¹⁵N₂ gas (99.8 atom% 15N, lot #11059; SI Science Co., Ltd., Tokyo, Japan) into the 24 vials. Previous study confirmed no contamination of ${}^{15}NO_3^-$ and ${}^{15}NH_4^+$ in the ¹⁵N₂ gas⁷². To observe ¹⁵N and ¹³C uptake, 0.5 mL of the ¹⁵N₂-enriched medium was then added to 9.0 mL of Crocosphaera cultures $(4.1 \times 10^5 \text{ cells mL}^{-1})$ harvested from the continuous culture in 10 mL serum vials, to a final N₂ enrichment of 5.5 atom% and 0.5 mL NaH13CO3 was injected simultaneously to a final enrichment of 9.7 atom%. These vials (n = 24) were sealed with crimp-seal butyl tube closures to eliminate headspace and air bubbles, preventing dilution of $^{15}N_2$ with atmospheric ¹⁴N₂. The vials were incubated under the same conditions as previously described and harvested one vial every hour beginning at the start of the dark period (6 PM), and split into three aliquots for NanoSIMS, PON and mass spectrometry, and flow cytometry. Samples prior to isotope injection were also collected and analyzed as time 0. Samples at 4 L were lost. Cells observed under NanoSIMS analysis were from 7 to 37 cells at each time point.

In *Cyanothece*, ¹⁵N and ¹²C uptake were analyzed as described for *Crocosphaera*, except for small differences in the source of ¹⁵N₂ gas (98 atom% ¹⁵N, lot# MBBB0968V; Sigma-Aldrich, St. Louis, Missouri, USA), culture volume (4.0 mL of 1.7×10^6 cells mL⁻¹ in 5 mL serum vials), final enrichment (13.6 atom% and 1.7 atom% for ¹⁵N and ¹³C, respectively), sampling frequency (2 h), and the 87 to 220 cells were analyzed per each time point. Contamination of dissolved inorganic nitrogen in N₂ was not analyzed in the ¹⁵N gas.

NanoSIMS imaging. Cells (1 mL) were fixed in 2.0% w/v glutaraldehyde, and collected using 0.2-µm IsoporeTM GTTP Millipore Membrane filters (Merck Millipore, Billerica, Massachusetts, USA), which were then washed with Milli-Q ultrapure water and stored at -20 °C until further processing. For analysis, samples were sputtered with gold and secondary ions were imaged in 5 or 10 serial images (layers) on a NanoSIMS 50 (Cameca, Gennevilliers, France) to quantify ¹²C, ¹³C, ¹²C¹⁴N, and ¹²C¹⁵N in 7 to 220 cells per time point, following earlier studies^{34,73}. Secondary ions were generated by pre-sputtering with a 300 or 500 pA Cs⁺ beam before scanning a raster of 256×256 pixels $(10-15 \,\mu\text{m}^2 \text{ total raster size})$ with a 1.7–1.8 pA Cs⁺ primary beam. Ratios of $^{15}\text{N}.^{14}\text{C}$ (inferred from the $^{12}\text{C}^{15}\text{N}/$ ¹²C¹⁴N) and ¹³C^{:12}C (¹³C/¹²C) are shown in the results (Figs. 1–4, Supplementary Fig. 1 and Supplementary Table 1). The system was tuned for ~9,000 mass resolving power to overcome isobaric interference, and confirmed against isotopic ratios obtained in organic particulates determined by Flash EA elemental analyzer (Thermo Electron Corporation, Waltham, Massachusetts, USA) coupled to a DELTA^{plus} XP mass spectrometer (Thermo Electron Corporation, Waltham, Massachusetts, USA) (Supplementary Fig. 1).

Elemental analysis and mass spectrometry. Cells (8 mL) were collected on Whatman GF/F filters (GE Healthcare UK Ltd., Little Chalfont, Buckinghamshire, United Kingdom) pre-combusted at 450 °C for 6 h, and frozen at -20 °C until further processing. For analysis, filters were dried at 50 °C overnight, exposed to HCl fumes for 2 h, and then dried again. The concentration and isotopic composition of total particulate organic C and N were measured on a Flash EA elemental analyzer (Thermo Electron Corporation, Waltham, Massachusetts, USA) coupled to a DELTAP^{lus} XP mass spectrometer (Thermo Electron Corporation, Waltham, Massachusetts, USA). The abundance of ¹³C and ¹⁵N were expressed as δ^{13} C (or δ^{15} N) (%): δ^{13} C (δ^{15} N) = [($R_{\rm sample}/R_{\rm standard})$ –1] * 1000. Lower limit of the detection of the Flash EA elemental analyzer (Thermo Electron Corporation, Waltham, Massachusetts, USA) is 0.005 mg N (Supplementary Table 3).

Flow cytometry. Samples (4.5 mL) were fixed with 0.5% w/v glutaraldehyde, and stored at -80 °C until being counted on a PASIII flow cytometer (Partec GmbH, Münster, Germany) equipped with 10 mW argon ion lasers.

Calculation of carbon and nitrogen uptake rates. Images obtained by NanoSIMS were processed in ImageJ⁷⁴ following methods described by Popa et al.³⁴. Briefly, the mean isotopic compositions in each cell, delineated by the $^{12}C^{14}N$ images, were integrated over 5 or 10 serial images, corrected against reference standards, and converted to percentage uptake with a measurement precision of 0.8–1.5%. Cells with a $^{12}C^{15}N$: $^{12}C^{14}N$ (^{15}N : ^{14}N) ratio exceeding 2 standard deviations above the average at time 0 (at which ^{15}N : ^{14}N was 3.8 ‰ for *Crocosphaera*, 4.0 ‰ for *Cyanothece*) were considered ^{15}N -enriched. Similarly, cells with a ^{13}C : ^{12}C was 9.8 ‰ for *Crocosphaera*, 11.8 ‰ for *Cyanothece*) were considered ^{13}C -enriched.

The rate of N₂ fixation was defined as the change in % ^{15}N h^{-1} relative to the initial measurement. Per-cell net N uptake rates (ρ ; fmol N cell $^{-1}$ h^{-1}) were calculated using a method adapted from Popa et al. 34 , described in [Eq. 2].

$$\rho = F x_{net} \times Cell Q / \Delta t \tag{2}$$

where Fx_{net} is the ratio between ¹⁵N in a cell after Δt and the initial ¹⁵N content, and *CellQ* is the cellular N quota calculated as the sum of particulate organic ¹⁵N and ¹⁴N normalized to the cell density. As N₂ fixation in *Crocosphaera* occurs only at night^{21,29}, ¹⁵N enrichment in the dark (0–12 h) and during light (13–24 h) were treated as N₂ fixation and re-uptake of excreted dissolved ¹⁵N, respectively.

Statistics and reproducibility. ¹⁵N:¹⁴N ratios were compared by one-way ANOVA³⁹ with 25 time points as factor levels, and individual cells in a sample as independent replicates. Differences were considered significant if p < 0.05. Heterogeneity was defined by the coefficient of variation (CV; ref. ⁴¹):

$$V = 100 \times \sigma/\bar{x} \tag{3}$$

where \bar{x} is the mean and σ is the standard deviation among the cells. Normality assumptions were confirmed after logarithmic transformation (p > 0.05 by K-S test, n = 7-37 for *Crocosphaera*, n = 87-220 for *Cyanothece*) and residuals had a mean of zero. Dunnett's T-3 multiple comparisons⁷⁵ were used to compare background ratios.

To compute the bimodal separation, we first fit the sum of two Gaussian distributions to the histogram⁴²:

C

$$F_B(x) = A_1 \exp\{-(x - \bar{x}_1)^2 / 2\sigma_1^2\} + A_2 \exp\{-(x - \bar{x}_2)^2 / 2\sigma_2^2\}$$
(4)

where $F_B(x)$ is frequency of x, A_i is amplitude, \bar{x}_i is mean and σ_i is standard deviation $(i = 1 \text{ or } 2 \text{ and } \bar{x}_2 > \bar{x}_1)$. We obtain A_i , \bar{x}_i and σ_i with Metropolis Algorithm^{76,77}, that minimizes the sum of square error between [Eq. 4] and the histogram. Based on values of \bar{x}_i and σ_b obtained, we calculate the bimodal separation:

$$S = \frac{\bar{x}_2 - \bar{x}_1}{2\sigma_1 + 2\sigma_2} \tag{5}$$

To examine the statistical significance of the difference between N and C uptake, we use the curve fitted to ¹⁵N:¹⁴N, and re-fitted to ¹³C:¹²C, by maintaining the original relative relationship between A_1 and A_2 , \bar{x}_1 and \bar{x}_2 , and σ_1 and σ_2 and value of *S* obtained based on ¹⁵N:¹⁴N of the same diazotroph. The *p* value is obtained based on the difference between the data of ¹³C:¹²C and the fitted curve as a null hypothesis.

To compute the deviation from the normal distribution, we applied the following procedure. If variation in the rate of C or N uptake is randomly distributed among cells of a population with a constant mean rate, we expect the probability density of C and N uptake follows the normal distribution⁷⁸:

$$E(x) = \frac{A}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{(x-\bar{x})^2}{2\sigma^2}\right\}$$
(6)

where E(x) is the expected probability density for value x based on the normal distribution, A is the total area of the histogram, σ is the observed standard deviation, and \bar{x} is the observed mean value. If the C or N uptake of the population is heterogeneous, we expect stronger deviation from [Eq. 6]; we calculate the deviation from the Chi squared (χ^2) statistic⁷⁹, normalized by the sample number:

$$Dev = \frac{\chi^2}{n} = \frac{1}{n} \sum \frac{(O(x) - E(x))^2}{E(x)}$$
(7)

where O(x) is observed probability density for the value x. The normalization by n makes results with different sample numbers comparable (here *Crocosphaera* and *Cyanothece*).

Reproducibility was confirmed by analyzing 7 to 37 independent *Crocosphaera* cells, and 87 to 220 independent *Cyanothece* cells (Supplementary Table 1).

Numerical model of heterogeneous metabolisms. To represent heterogeneous metabolisms within a single clonal population of unicellular diazotrophs, we have modified the Cell Flux Model of diazotrophs⁴⁴ by simulating two types of cells; N₂-fixing and non-N₂ fixing (Fig. 5). The model resolves a coarse-grained metabolic flux network based on mass, electron and energy (ATP) balance. These balances quantify stored C use for 3 cellular functions: biosynthesis, electron donation for N₂ fixation, and respiration. Respiration can be further classified into three uses; respiration for biosynthesis, for N₂ fixation and for respiratory protection (Fig. 5). The model was parameterized for *Crocosphaera* based on a respiration budget⁴³ by reducing the diffusivity of cell membranes⁴⁴. We use cellular N of 30 fmol N cell⁻¹ and a diameter of 3µm and temperature of 28 °C to better represent *Crocosphaera* (strain WH8501) in Großkopf and Laroche⁴³, which gives the diffusivity coefficient of the membrane of 1.51×10^{-5} , slightly higher than previously estimated (1.38×10^{-5}). To represent *Crocosphaera* in this study (strain PS0609A) we used a cell diameter of 5 µm (based on Fig. 1 and Sohm et al.⁸⁰ for a larger size class), a cellular N of 60 fmol cell⁻¹, and the maximum N₂ fixation rate of 6.1 fmol cell⁻¹ h⁻¹. To represent the laboratory condition, we applied temperature T = 26 °C and assume saturated O₂ concentration

 $[O_2]=208\,\mu\text{M}$ (ref. 81), and $\mu=0.20\,d^{-1}$ (when μ is constant). We have used a uniform growth rate among cells following previous studies $^{82-86}$.

Application of the model to one dimensional water column. To simulate the light attenuation in the one-dimensional water column, we used Beer's law:

$$I(z) = I_0 e^{-kz} \tag{8}$$

where I(z) is the light intensity (µmol m⁻² s⁻¹) at the depth of z (m), I_0 is the light intensity at the surface (µmol m⁻² s⁻¹), and k is the extinction coefficient (m⁻¹). To simulate the photosynthesis rate by *Crocosphaera*, we adapt a commonly used equation with saturating light based on Target theory^{85,87}:

$$P(I) = P_{\max}(1 - e^{-I/I_0^P})$$
(9)

where P(I) is the rate of photosynthesis (fmol C cell⁻¹ h⁻¹) at the light intensity of I, P_{max} is the maximum photosynthesis rate (fmol C cell⁻¹ h⁻¹), I_0^p is the reference light intensity at which P becomes (e - 1)/e. Then, with the Cell Flux Model, we find the growth rate μ (d⁻¹) where $C_S(\mu) = P(I)$, where we use $E_N = 0.2$ and $f_N = 0.5$ for the population with heterogeneous N₂ fixation and $f_N = 1$ for the population with heterogeneous N₂ fixation and $f_N = 1$ for the population. We consider a simple 12:12 (h) light:dark cycle, at which photosynthesis occurs only during the light period and N₂ fixation and respiratory protection occur only during the dark periods. We apply $I_0 = 1000$ and $z_0 = 30$ to resemble observed depth profile of light in the subtropical gyres^{50,88}, and $P_{max} = 7$ and $I_0^p = 100$ where the simulated maximum growth rate becomes close to the highest side of the observed range⁴⁸ and MVD of the population of heterogeneous N₂ fixation becomes close to 125 (m), below which the *nifH* copies of *Crocosphaera* is observed to drop considerably.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The data used to generate the graphs presented in the main figures can be found as Supplementary Data 1. All other data that support the findings of this study are available on request from the corresponding author (TM).

Code availability

The model has been written in Python 3 and freely available in Zenodo at https://zenodo. org/record/1251956 (https://doi.org/10.5281/zenodo.1251956).

Received: 19 December 2018; Accepted: 13 March 2020; Published online: 14 April 2020

References

- Montoya, J. P., Carpenter, E. J. & Capone, D. G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. *Limnol. Oceanogr.* 47, 1617–1628 (2002).
- Hunt, B. P. V. et al. Contribution and pathways of diazotroph-derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon. *Biogeosciences* 13, 3131–3145 (2016).
- Horii, S., Takahashi, K., Shiozaki, T., Hashihama, F. & Furuya, K. Stable isotopic evidence for the differential contribution of diazotrophs to the epipelagic grazing food chain in the mid-Pacific Ocean. *Glob. Ecol. Biogeogr.* 27, 1467–1480 (2018).
- Loick-Wilde, N. et al. Nitrogen sources and net growth efficiency of zooplankton in three Amazon River plume food webs. *Limnol. Oceanogr.* 61, 460–481 (2016).
- Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogencycling network. *Nat. Rev. Microbiol.* 16, 263–276 (2018).
- Gallon, J. R. Reconciling the incompatible: N₂ fixation and oxygen. *N. Phytol.* 122, 571–609 (1992).
- Fay, P. Oxygen relations of nitrogen-fixation in Cyanobacteria. *Microbiol Rev.* 56, 340–373 (1992).
- Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine Cyanobacterium *Trichodesmium*. Science 294, 1534–1537 (2001).
- Berman-Frank, I., Lundgren, P. & Falkowski, P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. *Res. Microbiol.* 154, 157–164 (2003).
- 10. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. *Nat. Rev. Microbiol* **9**, 499–508 (2011).
- Moisander, P. H. et al. Unicellular cyanobacterial distributions broaden the oceanic N₂ fixation domain. *Science* **327**, 1512–1514 (2010).

- 12. Luo, Y. W. et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. *Earth Syst. Sci. Data* **4**, 47–73 (2012).
- Monteiro, F. M., Follows, M. J. & Dutkiewicz, S. Distribution of diverse nitrogen fixers in the global ocean. *Glob. Biogeochemical Cycles* 24, GB3017 (2010).
- Zehr, J. P. Nitrogen fixation by marine cyanobacteria. *Trends Microbiol* 19, 162–173 (2011).
- Zehr, J. P. & Bombar, D. Marine nitrogen fixation: organisms, significance, enigmas, and future directions. In *Biological nitrogen fixation* (ed. FJ de Bruijn) 857–872 (Wiley, 2015).
- Zehr, J. P. et al. Unicellular cyanobacteria fix N₂ in the subtropical North Pacific Ocean. *Nature* 412, 635–638 (2001).
- Foster, R. A., Sztejrenszus, S. & Kuypers, M. M. Measuring carbon and N₂ fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. *J. Phycol.* 49, 502–516 (2013).
- Montoya, J. P. et al. High rates of N₂ fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. *Nature* 430, 1027–1032 (2004).
- Langlois, R. J., Hummer, D. & LaRoche, J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. *Appl Environ. Microbiol* 74, 1922–1931 (2008).
- 20. Mohr, W., Intermaggio, M. P. & LaRoche, J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium *Crocosphaera watsonii* WH8501. *Environ. Microbiol* **12**, 412–421 (2010).
- Dron, A. et al. Light:dark (12:12 h) quantification of carbohydrate fluxes in Crocosphaera watsonii. Aquat. Microb. Ecol. 68, 43-55 (2012).
- 22. Masuda, T. et al. Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium *Crocosphaera watsonii* WH8501. *Environ. Microbiol.* **20**, 546–560 (2018).
- Mohr, W., Vagner, T., Kuypers, M. M., Ackermann, M. & La Roche, J. Resolution of conflicting signals at the single-cell level in the regulation of cyanobacterial photosynthesis and nitrogen fixation. *PLoS ONE* 8, e66060 (2013).
- Langlois, R. J., LaRoche, J. & Raab, P. A. Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. *Appl. Environ. Microbiol.* 71, 7910–7919 (2005).
- Foster, R. A. et al. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. *Limnol. Oceanogr.* 52, 517–532 (2007).
- Bonnet, S. et al. Dynamics of N₂ fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia). *Biogeosciences* 13, 2653–2673 (2016).
- Reddy, K. J., Haskell, B., Sherman, D. M. & Sherman, L. A. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus *Cyanothece. J. Bacteriol.* 175, 1284–1292 (1993).
- Červený, J., Sinetova, M. A., Valledor, L., Sherman, L. A. & Nedbal, L. Ultradian metabolic rhythm in the diazotrophic cyanobacterium *Cyanothece* sp. ATCC 51142. *Proc. Natl. Acad. Sci. USA* **110**, 13210–13215 (2013).
- Tuit, C., Waterbury, J. & Ravizzaz, G. Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria. *Limnol. Oceanogr.* 49, 978–990 (2004).
- Colón-López, M., Sherman, D. M. & Sherman, L. A. Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light grown cultures of the unicellular cyanobacterium *Cyanothece* sp. strain ATCC 51142. J. Bacteriol. 179, 4319–4327 (1997).
- Pennebaker, K., Mackey, K. R. M., Smith, R. M., Williams, S. B. & Zehr, J. P. Diel cycling of DNA staining and nifH gene regulation in the unicellular cyanobacterium *Crocosphaera watsonii* strain WH 8501 (Cyanophyta). *Environ. Microbiol.* 12, 1001–1010 (2010).
- Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. *Annu. Rev. Microbiol.* 63, 411–429 (2009).
- Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. *FEMS Microbiol. Rev.* 36, 486–511 (2012).
- Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).
- Finzi-Hart, J. A. et al. Fixation and fate of C and N in the cyanobacterium *Trichodesmium* using nanometer-scale secondary ion mass spectrometry. *Proc. Natl. Acad. Sci. USA* 106, 9931–9931 (2009).
- Marchant, H. K., Mohr, W. & Kuypers, M. M. Recent advances in marine Ncycle studies using ¹⁵N labeling methods. *Curr. Opin. Biotechnol.* 41, 53–59 (2016).
- Martínez-Pérez, C. et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. *Nat. Microbiol.* 1, 16163 (2016).
- Krupke, A. et al. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis. *ISME J.* 9, 1635–1647 (2015).
- Iversen, G. R. Analysis of variance. In: *International Encyclopedia of Statistical Science* (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).

- Bandyopadhyay, A., Elvitigala, T., Liberton, M. & Pakrasi, H. B. Variations in the rhythms of respiration and nitrogen fixation in members of the unicellular diazotrophic cyanobacterial genus *Cyanothece. Plant Physiol.* 161, 1334–1346 (2013).
- Stępniak, C. Coefficient of variation. In: International Encyclopedia of Statistical Science (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).
- Zhang, C., Mapes, B. E. & Soden, B. J. Bimodality in tropical water vapour. Q. J. R. Meteorological Soc. 129, 2847–2866 (2003).
- Großkopf, T. & Laroche, J. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front. Microbiol. 3, 236 (2012).
- Inomura, K., Bragg, J. & Follows, M. J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on *Azotobacter vinelandii*. *ISME J.* 11, 166–175 (2017).
- Rittmann, B. E. & McCarty, P. L. Stoichiometry and bacterial energetics. In: Environmental Biotechnology: Principles and Applications. 126–164 (McGraw-Hill, New York, NY, USA, 2001).
- Fu, F. X. et al. Interactions between changing pCO₂, N₂ fixation, and Fe limitation in the marine unicellular cyanobacterium *Crocosphaera*. *Limnol. Oceanogr.* 53, 2472–2484 (2008).
- Gradoville, M. R., White, A. E. & Letelier, R. M. Physiological response of Crocosphaera watsonii to enhanced and fluctuating carbon dioxide conditions. PLoS ONE 9, e110660 (2014).
- Follett, C. L., Dutkiewicz, S., Karl, D. M., Inomura, K. & Follows, M. J. Seasonal resource conditions favor a summertime increase in North Pacific diatom-diazotroph associations. *ISME J.* 12, 1543–1557 (2018).
- Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) Program: Background, rationale and field implementation. *Deep-Sea Res.* 43, 129–156 (1996).
- Shiozaki, T. et al. Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean. *Glob. Biogeochem. Cycles* 32, 1028–1044 (2018).
- Dekaezemacker, J. & Bonnet, S. Sensitivity of N₂ fixation to combined nitrogen forms (NO₃⁻ and NH₄⁺) in two strains of the marine diazotroph *Crocosphaera watsonii* (Cyanobacteria). *Mar. Ecol. Prog. Ser.* **438**, 33–46 (2011).
- 52. Knapp, A. N., Dekaezemacker, J., Bonnet, S., Sohm, J. A. & Capone, D. G. Sensitivity of *Trichodesmium erythraeum* and *Crocosphaera watsonii* abundance and N₂ fixation rates to varying NO₃⁻ and PO₄³⁻ concentrations in batch cultures. *Aquat. Microb. Ecol.* 66, 223–236 (2012).
- Knapp, A. N. The sensitivity of marine N₂ fixation to dissolved inorganic nitrogen. Front Microbiol 3, 374 (2012).
- Inomura, K., Bragg, J., Riemann, L. & Follows, M. J. A quantitative model of nitrogen fixation in the presence of ammonium. *PLoS ONE* 13, e0208282 (2018).
- Stukel, M. R., Coles, V. J., Brooks, M. T. & Hood, R. R. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume. *Biogeosciences* 11, 3259–3278 (2014).
- Dutkiewicz, S. et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. *Biogeosciences* 12, 4447–4481 (2015).
- 57. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. *Nat. Rev. Microbiol* **13**, 497–508 (2015).
- Celiker, H. & Gore, J. Cellular cooperation: insights from microbes. *Trends Cell Biol.* 23, 9–15 (2013).
- Lin, S., Henze, S., Lundgren, P., Bergman, B. & Carpenter, E. J. Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, *Trichodesmium* spp. *Appl. Environ. Microbiol.* 64, 3052–3058 (1998).
- Kupper, H., Ferimazova, N., Setlik, I. & Berman-Frank, I. Traffic lights in trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. *Plant Physiol.* 135, 2120–2133 (2004).
- Eichner, M. J. et al. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of *Trichodesmium* under different pCO₂. *ISME J.* 11, 1305–1317 (2017).
- Ohki, K. & Taniuchi, Y. Detection of nitrogenase in individual cells of a natural population of *Trichodesmium* using immunocytochemical methods for fluorescent cells. J. Oceanogr. 65, 427–432 (2009).
- Sanchez-Baracaldo, P., Hayes, P. K. & Blank, C. E. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. *Geobiology* 3, 145–165 (2005).
- Hammerschmidt, K., Landan, G., Kümmel Tria, F. D. & Dagan, T. A chronology of multicellularity evolution in cyanobacteria. *bioRxiv* https://doi. org/10.1101/570788 (2019).
- Schirrmeister, B. E., Antonelli, A. & Bagheri, H. C. The origin of multicellularity in cyanobacteria. *BMC Evolut. Biol.* 11, 45 (2011).
- Kirk, D. L. A twelve-step program for evolving multicellularity and a division of labor. *BioEssays* 27, 299–310 (2005).

- Michod, R. E. Evolution of individuality during the transition from unicellular to multicellular life. Proc. Natl. Acad. Sci. USA 104, 8613–8618 (2007).
- Masuda, T., Furuya, K., Kodama, T., Takeda, S. & Harrison, P. J. Ammonium uptake and dinitrogen fixation by the unicellular nanocyanobacterium *Crocosphaera watsoniiin* nitrogen-limited continuous cultures. *Limnol. Oceanogr.* 58, 2029–2036 (2013).
- Guillard, R. R. L. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 8, 229–239 (1962).
- Guillard, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In *Culture of Marine Invertebrate Animals* (eds Smith W.L. & Chanley M.H) 26–60 (Plenum Press, New York, USA, 1975).
- Provasoli, L., McLaughlin, J. J. A. & Droop, M. R. The development of artificial media for marine algae. *Arcb. Mikrobiol.* 25, 392–428 (1957).
- 72. Shiozaki, T. et al. Why is *Trichodesmium* abundant in the Kuroshio? *Biogeosciences* **12**, 6931–6943 (2015).
- Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. *Proc. Natl. Acad. Sci. USA* 105, 17861–17866 (2008).
- Schneider, C. A., Rasbad, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* 9, 671–675 (2012).
- Chavez, F. P., Messie, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. *J. Chem. Phys.* 21, 1087–1092 (1953).
- 77. Omta, A. W. et al. Extracting phytoplankton physiological traits from batch and chemostat culture data. *Limnol. Oceanogr.: Methods* **15**, 453–466 (2017).
- Krishnamoorthy, K. Statistical distributions: an overview. In *International Encyclopedia of Statistical Science* (ed. Lovric M.) (Springer, Berlin, Heidelberg, 2011).
- Wilson, E. B. & Hilferty, M. M. The distribution of chi-square. Proc. Natl. Acad. Sci. USA 17, 684–688 (1931).
- Sohm, J. A., Edwards, B. R., Wilson, B. G. & Webb, E. A. Constitutive extracellular polysaccharide (EPS) production by specific isolates of *Crocosphaera watsonii. Front Microbiol* 2, 229 (2011).
- Benson, B. B. & Krause, D. The concentration and isotopic fraction of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. *Limnol. Oceanogr.* 29, 620–632 (1984).
- Ågren, G. I. The C:^oN:^oP stoichiometry of autotrophs theory and observations. *Ecol. Lett.* 7, 185–191 (2004).
- Pahlow, M. & Oschlies, A. Chain model of phytoplankton P, N and light colimitation. *Mar. Ecol. Prog. Ser.* 376, 69–83 (2009).
- Talmy, D., Blackford, J., Hardman-Mountford, N. J., Dumbrell, A. J. & Geider, R. J. An optimality model of photoadaptation in contrasting aquatic light regimes. *Limnol. Oceanogr.* 58, 1802–1818 (2013).
- Geider, R. J., MacIntyre, H. L. & Kana, T. M. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. *Limnol. Oceanogr.* 43, 679–694 (1998).
- Ghyoot, C., Flynn, K. J., Mitra, A., Lancelot, C. & Gypens, N. Modeling plankton mixotrophy: a mechanistic model consistent with the Shuter-type biochemical approach. *Front. Ecol. Evol.* 5, https://doi.org/10.3389/ fevo.2017.00078 (2017).
- Cullen, J. J. On models of growth and photosynthesis in phytoplankton. Deep Sea Res. 37, 667–683 (1989).
- Letelier, R. M., Karl, D. M., Abbott, M. R. & Bidigare, R. R. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. *Limnol. Oceanogr.* 49, 508–519 (2004).

Acknowledgements

We would like to thank Douglas Campbell for valuable discussions and critical reading of the paper, Michael J. Follows for useful suggestions and Evelyn Lawrenz for her assistance with statistical analyses. This research was financially supported by MEXT grants for Scientific Research on Innovative Areas (24121001, 24121005, K.F.), GAČR (project 16-15467S, O.P.), the Czech Ministry of Education, Youth and Sports (projects LO1416, O.P.), the Simons Foundation (Life Sciences-Simons Postdoctoral Fellowships in Marine Microbial Ecology, Award 544338, K.I.) and the Gordon and Betty Moore Foundation (grant #3775, C.D.).

Author contributions

T.M. and K.F. designed the experiments and T.M. performed them with help from T.S. T. M. and T.S. analyzed samples with help from N.T. and Y.S. K.I. designed and performed the Cell Flux Model. K.I. and C.D. designed the model application to the water column and K.I. performed the computation. T.M. and K.I. statistically analyzed the data with the advice from C.D. O.P. contributed to the interpretation of findings. T.M. and K.I. prepared the original draft, which is revised by all the co-authors.

ARTICLE

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42003-020-0894-4.

Correspondence and requests for materials should be addressed to T.M.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2020